Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Cross-linker-mediated regulation of actin network organization controls tissue morphogenesis.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape
J Cell Biol, 28 Jun 2019 DOI: 10.1083/jcb.201811127 Link to full text
Abstract: Contraction of cortical actomyosin networks driven by myosin activation controls cell shape changes and tissue morphogenesis during animal development. In vitro studies suggest that contractility also depends on the geometrical organization of actin filaments. Here we analyze the function of actomyosin network topology in vivo using optogenetic stimulation of myosin-II in Drosophila embryos. We show that early during cellularization, hexagonally arrayed actomyosin fibers are resilient to myosin-II activation. Actomyosin fibers then acquire a ring-like conformation and become contractile and sensitive to myosin-II. This transition is controlled by Bottleneck, a Drosophila unique protein expressed for only a short time during early cellularization, which we show regulates actin bundling. In addition, it requires two opposing actin cross-linkers, Filamin and Fimbrin. Filamin acts synergistically with Bottleneck to facilitate hexagonal patterning, while Fimbrin controls remodeling of the hexagonal network into contractile rings. Thus, actin cross-linking regulates the spatio-temporal organization of actomyosin contraction in vivo, which is critical for tissue morphogenesis.
2.

Guided morphogenesis through optogenetic activation of Rho signalling during early Drosophila embryogenesis.

blue CRY2/CIB1 D. melanogaster in vivo Developmental processes
Nat Commun, 18 Jun 2018 DOI: 10.1038/s41467-018-04754-z Link to full text
Abstract: During organismal development, cells undergo complex changes in shape whose causal relationship to individual morphogenetic processes remains unclear. The modular nature of such processes suggests that it should be possible to isolate individual modules, determine the minimum set of requirements sufficient to drive tissue remodeling, and re-construct morphogenesis. Here we use optogenetics to reconstitute epithelial folding in embryonic Drosophila tissues that otherwise would not undergo invagination. We show that precise spatial and temporal activation of Rho signaling is sufficient to trigger apical constriction and tissue folding. Induced furrows can occur at any position along the dorsal-ventral or anterior-posterior embryo axis in response to the spatial pattern and level of optogenetic activation. Thus, epithelial folding is a direct function of the spatio-temporal organization and strength of Rho signaling that on its own is sufficient to drive tissue internalization independently of any pre-determined condition or differentiation program associated with endogenous invagination processes.
Submit a new publication to our database