Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Wei Huang"
Showing 1 - 2 of 2 results
1.

Phase-driven rewiring in Escherichia coli enhances coenzyme Q10 biosynthesis via temporal and energetic coordination.

blue YtvA E. coli Transgene expression
Appl Microbiol Biotechnol, 24 Nov 2025 DOI: 10.1007/s00253-025-13619-7 Link to full text
Abstract: Coenzyme Q10 biosynthesis in Escherichia coli is constrained by kinetic mismatches between precursor synthesis and methylation, alongside bioenergetic uncoupling. We implemented an optogenetic phase-control strategy integrating dynamic light induction, ribosome binding site (RBS) engineering, and real-time membrane potential (ΔΨ) feedback. Temporal coordination of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and UbiG methyltransferase (UbiG) via a 6-h phase delay reduced methylglyoxal shunt flux by 41 ± 3% (p < 0.01) through enhanced precursor channeling. Membrane hyperpolarization to - 90 ± 2 mV (relative to - 70 mV in controls) triggered voltage-gated UbiG membrane localization (62 ± 3%) and ATP-driven S-adenosylmethionine regeneration, increasing methylation efficiency 2.3-fold. Multivariate modeling identified ΔΨ and acetate as critical control parameters, enabling optimized fermentation (dissolved oxygen (DO) 15-20%, pH 6.7-6.9). The engineered strain achieved 0.63 ± 0.07 g/L CoQ10 in 5-L bioreactors-a 4.3-fold improvement over the static control strain (0.15 ± 0.02 g/L)-with 82.5% carbon efficiency and 25.8% glycerol-to-product yield. This work establishes bioenergetically coupled temporal control as a scalable paradigm for membrane-bound isoprenoid biomanufacturing. KEY POINTS: • Phase-driven enzyme synchronization via optogenetics resolves kinetic mismatch. • Membrane hyperpolarization gates enzyme localization and ATP regeneration. • Model-integrated bioenergetic-process control enhances CoQ10 production efficiency.
2.

Reshaping tumor microenvironment by regulating local cytokines expression with a portable smart blue-light controlled device.

blue VVD P815 Transgene expression
Commun Biol, 29 Jul 2024 DOI: 10.1038/s42003-024-06566-y Link to full text
Abstract: Cytokines have attracted sustained attention due to their multi-functional cellular response in immunotherapy. However, their application was limited to their short half-time, narrow therapeutic window, and undesired side effects. To address this issue, we developed a portable smart blue-light controlled (PSLC) device based on optogenetic technology. By combining this PSLC device with blue-light controlled gene modules, we successfully achieved the targeted regulation of cytokine expression within the tumor microenvironment. To alter the tumor microenvironment of solid tumors, pro-inflammatory cytokines were selected as blue-light controlled molecules. The results show that blue-light effectively regulates the expression of pro-inflammatory cytokines both in vitro and in vivo. This strategy leads to enhanced and activated tumor-infiltrating immune cells, which facilitated to overcome the immunosuppressive microenvironment, resulting in significant tumor shrinkage in tumor-bearing mice. Hence, our study offers a unique strategy for cytokine therapy and a convenient device for animal studies in optogenetic immunotherapy.
Submit a new publication to our database