Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: journal:"Adv Genet (Hoboken)"
Showing 1 - 2 of 2 results
1.

Two Decades of Optogenetic Tools: A Retrospective and a Look Ahead.

blue green red BLUF domains Cobalamin-binding domains Cryptochromes Dronpa LOV domains OCP2 Phytochromes Review
Adv Genet (Hoboken), 2 Sep 2025 DOI: 10.1002/ggn2.202500021 Link to full text
Abstract: Over the past two decades, optogenetics has evolved from a conceptual framework into a powerful and versatile technology for controlling cellular processes with light. Rooted in the discovery and characterization of natural photoreceptors, the field has advanced through the development of genetically encoded, light-sensitive proteins that enable precise spatiotemporal control of ion flux, intracellular signaling, gene expression, and protein interactions. This review traces key milestones in the emergence of optogenetics and highlights the development of major optogenetic tools. From the perspective of genetic tool innovation, the focus is on how these tools have been engineered and optimized for novel or enhanced functions, altered spectral properties, improved light sensitivity, subcellular targeting, and beyond. Their broadening applications are also explored across neuroscience, cardiovascular biology, hematology, plant sciences, and other emerging fields. In addition, current trends such as all-optical approaches, multiplexed control, and clinical translation, particularly in vision restoration are discussed. Finally, ongoing challenges are addressed and outline future directions in optogenetic tool development and in vivo applications, positioning optogenetics as a transformative platform for basic research and therapeutic advancement.
2.

Optogenetic-mediated cardiovascular differentiation and patterning of human pluripotent stem cells.

blue CRY2/CRY2 hESCs human IPSCs Signaling cascade control
Adv Genet (Hoboken), 10 Sep 2021 DOI: 10.1002/ggn2.202100011 Link to full text
Abstract: Precise spatial and temporal regulation of dynamic morphogen signals during human development governs the processes of cell proliferation, migration, and differentiation to form organized tissues and organs. Tissue patterns spontaneously emerge in various human pluripotent stem cell (hPSC) models. However, the lack of molecular methods for precise control over signal dynamics limits the reproducible production of tissue patterns and a mechanistic understanding of self-organization. We recently implemented an optogenetic-based OptoWnt platform for light-controllable regulation of Wnt/β-catenin signaling in hPSCs for in vitro studies. Using engineered illumination devices to generate light patterns and thus precise spatiotemporal control over Wnt activation, here we triggered spatially organized transcriptional changes and mesoderm differentiation of hPSCs. In this way, the OptoWnt system enabled robust endothelial cell differentiation and cardiac tissue patterning in vitro. Our results demonstrate that spatiotemporal regulation of signaling pathways via synthetic OptoWnt enables instructive stem cell fate engineering and tissue patterning.
Submit a new publication to our database