Qr: journal:"Soft Matter"
Showing 1 - 3 of 3 results
1.
Why epithelial cells collectively move against a traveling signal wave.
Abstract:
The response of cell populations to external stimuli plays a central role in biological mechanical processes such as epithelial wound healing and developmental morphogenesis. Wave-like propagation of a signal of ERK MAP kinase has been shown to direct collective migration in one direction; however, the mechanism based on continuum mechanics under a traveling wave is not fully understood. To elucidate how the traveling wave of the ERK kinase signal directs collective migration, we constructed the mechanical model of the epithelial cell monolayer by considering the signal-dependent coordination of contractile stress and cellular orientation. The proposed model was studied by using an optogenetically controlled cell system where we found that local signal activation induces changes in cell density and orientation with the direction of propagation. The net motion of the cell population occurred relative to the wave, and the migration velocity showed a maximum in resonance with the velocity of the ERK signal wave. The presented mechanical model was further validated in an in vitro wound healing process.
2.
Src kinase slows collective rotation of confined epithelial cell monolayers.
Abstract:
Collective cell migration is key during development, wound healing, and metastasis and relies on coordinated cell behaviors at the group level. Src kinase is a key signalling protein for the physiological functions of epithelia, as it regulates many cellular processes, including adhesion, motility, and mechanotransduction. Its overactivation is associated with cancer aggressiveness. Here, we take advantage of optogenetics to precisely control Src activation in time and show that its pathological-like activation slows the collective rotation of epithelial cells confined into circular adhesive patches. We interpret velocity, force, and stress data during period of non-activation and period of activation of Src thanks to a hydrodynamic description of the cell assembly as a polar active fluid. Src activation leads to a 2-fold decrease in the ratio of polar angle to friction, which could result from increased adhesiveness at the cell-substrate interface. Measuring internal stress allows us to show that active stresses are subdominant compared to traction forces. Our work reveals the importance of fine-tuning the level of Src activity for coordinated collective behaviors.
3.
Light-activated microtubule-based two-dimensional active nematic.
Abstract:
We assess the ability of two light responsive kinesin motor clusters to drive dynamics of microtubule-based active nematics: opto-K401, a processive motor, and opto-K365, a non-processive motor. Measurements reveal an order of magnitude improvement in the contrast of nematic flow speeds between maximally- and minimally-illuminated states for opto-K365 motors when compared to opto-K401 construct. For opto-K365 nematics, we characterize both the steady-state flow and defect density as a function of applied light. We also examine the transient behavior as the system switches between steady-states upon changes in light intensities. Although nematic flows reach a steady state within tens of seconds, the defect density exhibits transient behavior for up to 10 minutes, showing a separation between small-scale active flows and system-scale structural states. Our work establishes an experimental platform that can exploit spatiotemporally-heterogeneous patterns of activity to generate targeted dynamical states.