Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: journal:"Trends Neurosci"
Showing 1 - 2 of 2 results
1.

Capturing α-synuclein aggregation interactors using UltraID-LIPA.

blue Cryptochromes Review
Trends Neurosci, 10 Jul 2025 DOI: 10.1016/j.tins.2025.07.002 Link to full text
Abstract: Teixeira et al. present UltraID-light-inducible protein aggregation (UltraID-LIPA), a technique that combines optogenetic induction of α-synuclein aggregation with proximity-based proteomics. This system enables high-resolution capture of early aggregation events in live cells and implicates known and novel endolysosomal proteins, offering a robust framework for dissecting early pathogenic mechanisms in synucleinopathies and guiding future innovations.
2.

Spatiotemporally resolved protein synthesis as a molecular framework for memory consolidation.

blue LOV domains Review
Trends Neurosci, 17 Feb 2022 DOI: 10.1016/j.tins.2022.01.004 Link to full text
Abstract: De novo protein synthesis is required for long-term memory consolidation. Dynamic regulation of protein synthesis occurs via a complex interplay of translation factors and modulators. Many components of the protein synthesis machinery have been targeted either pharmacologically or genetically to establish its requirement for memory. The combination of ligand/light-gating and genetic strategies, that is, chemogenetics and optogenetics, has begun to reveal the spatiotemporal resolution of protein synthesis in specific cell types during memory consolidation. This review summarizes current knowledge of the macroscopic and microscopic neural substrates for protein synthesis in memory consolidation. In addition, we highlight future directions for determining the localization and timing of de novo protein synthesis for memory consolidation with tools that permit unprecedented spatiotemporal precision.
Submit a new publication to our database